Optimal Focusing and Scaling Law for Uniform Photo-Polymerization in a Thick Medium Using a Focused UV Laser

نویسندگان

  • Jui-Teng Lin
  • Da-Chuan Cheng
چکیده

We present a modeling study of photoinitiated polymerization in a thick polymer-absorbing medium using a focused UV laser. Transient profiles of the initiator concentration at various focusing conditions are analyzed to define the polymerization boundary. Furthermore, we demonstrate the optimal focusing conditions that yield more uniform polymerization over a larger volume than the collimated or non-optimal cases. Too much focusing with the focal length f < f* (an optimal focal length) yields a fast process; however, it provides a smaller polymerization volume at a given time than in the optimal focusing case. Finally, a scaling law is derived and shows that f* is inverse proportional to the product of the extinction coefficient and the initiator initial concentration. The scaling law provides useful guidance for the prediction of optimal conditions for photoinitiated polymerization under a focused UV laser irradiation. The focusing technique also provides a novel and unique means for obtaining uniform photo-polymerization within a limited irradiation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Kinetics of Enhanced Photo-Polymerization under a Collimated and a Reflecting Focused UV Laser

This study explored the kinetics of ultraviolet (UV) laser photoinitiated polymerization in thick polymer systems to achieve improved polymerization efficiency and uniformity. The modeling system comprised an incident UV laser and its reflecting beam, which was focused by a concave mirror to compensate for the exponential decay in the absorbing medium. The polymerization kinetic equation was nu...

متن کامل

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

متن کامل

Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...

متن کامل

Removal of Direct Red Dye 23 from Water and Wastewater Using S2O8 Oxidant Activated by UV Irradiation:An Investigation on the Operational Parameters

The photo-oxidative decolorization of Direct Red 23 (DR23), a textile dye which is suspected to be carcinogenic was investigated using peroxydisulfate activated by UV irradiation and heat in a batch photo-reactor at experimental conditions. A very simple analytical method, direct UV–vis spectrophotometric detection, was utilized for the progress of photo-oxidative decolorization of dye in aqueo...

متن کامل

Time-Dependent Hygro-Thermal Creep Analysis of Pressurized FGM Rotating Thick Cylindrical Shells Subjected to Uniform Magnetic Field

Time-dependent creep analysis is presented for the calculation of stresses and displacements of axisymmetric thick-walled cylindrical pressure vessels made of functionally graded material (FGM). For the purpose of time-dependent stress analysis in an FGM pressure vessel, material creep behavior and the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014